第三百四十八章 彼得尔

灵感,总是来的这么猝不及防!

程诺嘴角微微一勾,将书页翻回原本那一页。

既然Chebyshev(切比雪夫)给出的Bertrand假设的证明过程如此复杂,那么,自己就挑战一下,看看是否能够用更加简便的数学语言证明Bertrand假设吧。

顺便,来验证一下,这一年的深入钻研,自己的能力究竟到了何种地步。

Bertrand假设的简单证明方法。

光是这个论文题目,就足以被称得上是一区水平的论文。当然,前提是程诺真的能够探索出来那条简单的解法。

就如程诺之前所假设过的。数学界每一个猜想或者假设的证明过程都是由起点走到终点的过程,有的路线曲折,有的路线笔直。

而或许,切比雪夫发现的是那条比较曲折的路线,而程诺,则需要在前人的基础上,开辟出一条更加简捷的道路。

但这却比单独证明Bertrand假设要简单。

毕竟是站在巨人的肩膀上看待问题,有了切比雪夫这位“开荒者”提出的证明方案,程诺或多或少的也能从中汲取到什么,并进行独到的理解。

想到就做!

程诺不是那么犹豫不决的人。反正时间充裕,容得程诺在发现“此路不通”后,重新寻找另一个论文方向。

想要提出更加简便的方案,首先要把前人提出的证明思路吃透。

他没有火急火燎的直接开始自己的钻研,而是低下头,从头到尾的阅读书中关Bertrand假设的那十几页内容。

两个小时后,程诺合上书。

闭着眼回味了几秒,他从书包中掏出一摞空白的草稿纸,拿起桌面上的黑色碳素笔,聚精会神的开始了自己的推演:

想要证明Bertrand假设,就必须证明几个辅助命题。

引理一:【引理1:设n为一自然数,p为一素数,则能整除n!的p的最高幂次为:s=Σi≥1floor(n/pi)(式中floor(x)为不大于x的最大整数)】

这里,需要将从1到n的所有(n个)自然数排列在一条直线上,在每个数字上叠放一列si个记号,显然记号的总数是s。

关系式s=Σ1≤i≤n si表示的是先计算各列的记号数(即si)再求和,由此得到的关系,便是引理1。

引理二:【设n为自然数,p为素数,则Πp≤n p<4n】

用数学归纳法。n=1和n=2时引理显然成立。假设引理对n<N成立(N>2),我们来证明n=N的情形。

如果N为偶数,则Πp≤N p=Πp≤N-1 p,引理显然成立。

如果N为奇数,设N=2m+1(m≥1)。注意到所有m+1<p≤2m+1的素数都是组合数(2m+1)!/m!(m+1)!的因子,另一方面组合数(2m+1)!/m!(m+1)!在二项式展开(1+1)2m+1中出现两次,因而(2m+1)!/m!(m+1)!≤(1+1)2m+1/2=4m.

如此,便能……

程诺思路顺畅,几乎没费多大功夫,便用自己的方法将这两个辅助命题证明出来。

当然,这不过是才走完第一步而已。

按照切比雪夫的思路,后面还需要通过这两个定理引入到Bertrand假设的证明步骤中去。

切比雪夫用的方法是硬凑,没错,就是硬凑!

通过公式间的不断转换,将Bertrand假设的成立的某一个,或者某几个充要条件,转换为引理一或者引理二的形式,在进行化简整合求解。

当然,程诺肯定不能这么做。

因为用这种求证方案的话,别说是程诺,就算是让希尔伯特来,恐怕证明步骤也不会比切比雪夫简单多少。因此,必须要转换思路。

但是究竟怎么一个转换法……

呃……程诺还没想好。

眼看日头西斜,又到了吃完饭的时间,程诺一边脑海中思索,一边漫步走向食堂。

……

与此同时,远在大洋彼岸的米国。

《Inventiones mathematicae》杂志的总部,就设在米国的洛杉矶。